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Higher Mathematics Course Revision Notes

Straight Lines

Distance Formula

2

e Distance = \/(x2 —x) +(y, -y )2 between points (x,,,) and (x,,7,)

Gradients
°m :—)/2 —h between the pOintS (Xlgj/l) and (Xzayz) where X 7 X,
Xy T X

« Positive gradients, negative gradients, zero gradients, undefined gradients

/ \ eg)/=4 eg x =2

o Lines with the same gradient are parallel

eg The line parallel to 2y +3x=5

has gradient m = —% since 2y + 3x=5

2y=-3x+5
y= —%x +% (must be in the form y=mx+¢)

» Perpendicular lines have gradients such that mxm,, =-1

eg if m =% then m, = —%
e m=tan0

J

0 is the angle that the line makes with
g \ positive direction the positive direction of the x-axis
1 £

Equation of a Straight Line

o The line passing through (4, &) with gradient 7 has equation:

y=b=m(x—a)
Medians
R e M is the midpoint of AC, ie Mz(xlzxz,%;yzj
e BM is not usually perpendicular to AC, so m Xm, =—1
A M C cannot be used

 To work out the gradient of BM, use the gradient formula
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Higher Mathematics Course Revision Notes

Altitudes
B : .
¢ D is not usually the midpoint of AC
e BD is perpendicular to AC, so 2, Xm, =—1 can be used to
Ae 5 »C work out the gradient of BD

Perpendicular Bisectors

¢ CD passes through midpoint of AC

A' 1 l T 'B
C e CD is perpendicular to AB, so m, Xm, =—1 can be used to
C B find the gradient of CD
e Perpendicular bisectors do not necessarily have to appear
D within a triangle — they can occur with straight lines
A

Functions and Graphs

Composite Functions

Example
If f(x)=x"-2 and g(x) =%, find a formula for

(@) h(x)=f(g(x))
(b) £(x)=g(f(x))

and state a suitable domain for each.

(@) h(x)=f(g(x)) (b) k(x)=g(f(x))
=f(%) =g(x"-2)
_ (1Y - _ 1
(lx) 2 X2 =2
:?_2 Domain: {x:xe R, x;ti\/f}

Domain: {x:x€ R, x #0}

* You will probably only be asked for a domain if the function involved a fraction or an
even root. Remember that in a fraction the denominator cannot be zero and any
number being square rooted cannot be negative

eg f(x)=+/x+1 could have domain: {x:x€ R, x 21}
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Graphs of Inverses
e To draw the graph of an inverse function, reflect the graph of the function in the
line y =x
A P

y=g(x) _F

y=g (x)

»
»

O / x

Exponential and Logarithmic Functions

Exponential Logarithmic
Iy y=ﬂx,ﬂ>1 Iy y=ﬂx,0<ﬂ<l Ja y=log,x
Ol /1 X

BN (1,2) 1 \(},_ﬂ)

0 "x 0 x

Trigonometric Functions
Y =sinx ) =cosx y=tanx

'yA 'yA ')/A

)

60°

o N SNt A
-1 R - —1-f-------3 SAREEEEE -
180° 360° 180° 360° 180° 3
Period = 360° Period = 360° Period =180°
Amplitude =1 Amplitude =1 Amplitude is undefined

Graph Transformations

The next page shows the effect of transformations on the two graphs shown below.

Iy(2,2) 1=8) A
S S T — -
: \/ -
_10 3N\ X S T LN i
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Function Effect Effect on f (x) Effect on sinx®
f(x)+a | Shifts the graph Ja y=g(x)+1 y=sinx®+1
a up the (2,3) S T i
y-axis & E
(3,1) | L
1) . . T
5 > 180° 360
f(x+a) | Shifts the graph ¥, y=g(x+1) y=sin(x—90)°
—a alongthe |\ |~ | 4l R
x-axis (1,2) /g\ E
VAR
2 0 N Feeee -
180° 360°
—f(x) Reﬂec‘fs the N y=—g(x) y= —Sil’ll x°
graph in the 0 VA T e
x-axis 1 3 X /\
: T
2, -2 RS
( ) 180° 360°
f(=x) | Reflects the (=2,2) ¥, y=g(=x) sin(—x°) y‘r
graphinthe |~ | /| . A
y-axis E
o | "x
kf (x) Scales the graph Iy (2, 4) y=2g(x) y:%sinxo
vertically

Stretches if
E>1

Compresses if

k<1
£ (kx) Scales the graph Ja(l2) Y=g02x) y =sin2x°
horizontally $(12)

Compresses if

k>1
Stretches if

k<1

rof— A
!
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Differentiation
Differentiating

o If f(x)=ax" then f'(x)= anx™!

* Before you differentiate, all brackets should be multiplied out, and there should be no
fractions with an x term in the denominator (bottom line), for example:

3 - 1 -
—2=3x2 —=x

_1.-2
—3X X Jx

1
2

3x°
Equations of Tangents

» Tangents are straight lines, therefore to find the equation of a tangent, you need a point
on the line and its gradient to substitute into y —b=m(x —a)

e You will always be given one coordinate of the point which the tangent touches
e Find the other coordinate by solving the equation of the curve

o Find the gradient by differentiating then substituting in the x-coordinate of the point

Example

I Find the equation of the tangent to the graph of y = Jx? at the point where x=9.

y=+x y=~x" Atx=9, m=3x9} y—b=m(x—a)
-9
=9’ = x? =29 y=27=5(x-9)
=3’ b _3 3 =3x3 2y—54=9x-81
=27 e 2 _9 2y=9x-27
(9, 27)
» Stationary points occur at points where ?zO
X

e You must justify the nature of turning points or points of inflection
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Graphs of Derived Functions

Quadratic Cubic Quartic
)’Ar Ja
0
_ + i
0 * o\ +
: "x / E 89/ " "x
Ja i Ja i i
v -
" B "
/ + \:L /o -
N X

Linear Quadratic

Optimisation

e These types of questions are usually practical problems which involve maximum or
minimum areas or volumes

e Remember you must show that a maximum or minimum exists

Sequences

Linear Recurrence Relations

o A linear recurrence relation is in the form #,,, = au, +b. Also be aware that this may be

written as u, = au, ; +b

e [f -1<a<1 then alimit /=

" exists. You must state this whenever you use the limit
—a

formula
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Polynomials and Quadratics

Polynomials

o The degree of a polynomial is the value of the highest power, eg 3x* + 3 has degree 4

« Synthetic division (nested form) can be used to factorise polynomials

Example
3 52
‘Fmd 4 —7x 411
x+2
2| 4 -7 ()A/? Remember to put in 0

8 30 —60 if there is no term

4 -15 30 |-49

4x° —T7x*+11
x+2

=4x”> —15x + 30 remainder — 49

ie 4x° —7x° +11=(x+2)(4x2—15x+30)—49

e If the divisor is a factor then the remainder is zero

e If the remainder is zero then the divisor is a factor

Completing the Square

e The x* term must have a coefficient of one. If it does not, you must take out a common

factor from the x* and x term, but not the constant
e In the form y =a(x+ p)z + ¢ the turning point of the graph is (—p, g)
Example

I Write 3x> —12x+ 7 in the form a(x+p)2 +q.
3x* —12x+7

=3(x" —4x)+7
( 4 +(=2)" = (=2)*)+7

=3((x—=2)"—4)+7
=3(x—2)—-12+7
=3(x=2)" -5

Note that in this example, the graph is U-shaped since the x* coefficient is positive; and
the turning point is (2, —5).
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The Discriminant

e The discriminant is part of the quadratic formula and can be used to indicate how many
roots a quadratic has. For the quadratic ax® +bx +c:

If 4> —4ac >0, the roots are real and unequal (distinct) 2 roots
If b —4ac =0, the roots are real and equal (ie repeated roots) 1 root
If b —4ac <0, the roots are not real; they do not exist no roots

e The discriminant can also be used to calculate the number of intersections between a
line and a curve. To use it, you must first equate them and set equal to zero, before
using the discriminant

e Remember if 4> —4ac =0, the line is a tangent

Integration
Integrating
dxn+1
. jax” dx = +c
n+1

e As with differentiation, all brackets must be multiplied out, and there must be no
fractions with an x term in the denominator

Examples
2 7
1. Find Jﬂ 2. J% dx
dx 1 x? +5x _
ngszjgxs o J X deIxz(x2+5x7) dx
:jx_g dx =Ix0+5x5 dx
X =J‘1+5x5 dx
==+
% =x+%x6+c
=%x%+c
=%8x3+c
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The Area under a Curve

b
o If F(x)is the integral of f(x), then L f(x) dc=F(b)—F(a)

7 y=F ()

»
»

[ ANRE

e Remember that areas split by the x-axis must be calculated separately and any negative

signs ignored; these just show that the area is under the axis.

The Area between two Curves
o The area between the graphs of y= f(x) and y = g(x) is defined as Lff(x) —g(x) dx

Ja
y=g(x)

If the limits are not given, f(x) and g(x)
should be equated to find 2 and &

‘.X'
y=f(x)
Trigonometry

Background Knowledge
You should know how to use all of the information below:
« SOH CAH TOA

sin x
e tanx =

COoS X

. 2 2
e sin“x+cos" x=1
a b c

sin4 sinB sinC

e The sine rule:

b*+ct -4’
2bc

e The cosine rule: 2* =b*+c¢* —2bccosA or cosA=
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o The area of a triangle, A= %ab sinC
o CAST diagrams

e Exact values:

30°
2 2/ B

1 1

Radians

¢ You should know how to convert between radians and degrees:

+180 X 7

360° =21 90° = % 45° = % Degrees > Radians
180°=x 60° = % 30° = % Radians —2 180 + m > Degrees
5 5X%180 o
eg = = =150
s 6

Trigonometric Equations

e Look at the restrictions on the domain, eg 0 < x° <360, or 0<x <7
o Be aware of whether the answer is required in degrees or radians

e Remember a CAST diagram whenever you are asked to “solve”
Examples

I 1. Solve 3sin’x°=1 where 0<x°<360.
3sin’ x° =1

3(sinx°)’ =1

sinx°= \/% \/S A\/
x°=sin_1(i %) v'1 C v
X© = 35.30 x°=180-35.3 x°=180+35.3 x°=360-35.3
=144.7° =215.3° =324.7°

Solution set ={35.3°, 144.7°, 215.3°, 324.7°}
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| 2. Solve 2sin2x—1=0, 0<x<2x.

2sin2x—-1=0
2sin2x =1
sin2x=% ‘/S AY
2x=sin"" (%) T|C
2x°=30° 2x°=180°-30°
x°=15° 2x°=150°
x0=750
2x°=360°+30° 2x°=360°+180°-30°
2x°=390° 2x°=510°
x°=195° x°=255°
o_ 15 o_ 75 o_195
15 —mﬂ' 75 —mﬂ' 195 —mﬂ'
_3 _ 15 —~39
~367 367" 367
:% =%7r =%7r
. _ 5 13 __ 17
Solutions set = {%, SVEIVES ﬁn}

Compound Angle Formulae
e cos(A*x B)=cosAcos B Fsin Asin B
e sin(A+£ B)=sin Acos B £ cos Asin B

e These are given on the formula sheet

Double Angle Formulae

e sin2A=2sinAcos A

e cos2A=cos’ A—sin’ A
=1-2sin’ 4
=2cos’ A—1

o These are given on the formula sheet
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Circles
Equations of Circles

« A circle with centre (4,6) and radius r has the equation (x —a)’ +(y—4)" =+
« Note that if a circle has centre (0, 0) then the equation is x* + y* =’

o The equation can also be given in the form x* + y* +2gx +2 fy+ ¢ =0 where the centre

is (—g — ) and the radius r=4/g” + f* —¢

* You do not have to remember any of these equations, since they are all given in the
exam

e You will have to remember the distance formula, 4 = \/ (x2 — X, )2 + ( Yy = W )2 , since this

is not given, and is frequently used in circle questions

Intersection of a Line and a Circle

() ) (O

two intersections one intersection (tangency) no intersections

e Remember, a tangent and a line from the centre of a circle will meet at right angles,
which means that 72, Xm, =—1 can be used

Vectors

Basic Facts

e A vector is a quantity with both magnitude (size) and direction

e A vector is named either by using a directed line segment (eg AB) or a bold letter
(eg » written u)

e A vector may also be defined in terms of 7, j and k, the unit vectors in three
perpendicular directions:

oS~ O

1 0
i=|0 Jj= k=0
0 B 1

o The magnitude of vector AB= (Zj is defined as ‘E‘ =a’+b
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a, 51 a, + bl a, kdl 0
ela, || b |=|a,tb o k| a, |=| ka, | where kisascalar e Zero vector: | 0
a, b, a, b, a, ka, 0

e OA is called the position vector of the point A relative to the origin, written 2
o AB=56—a where a and b are the position vectors of A and B

o If AB = £BC where £ is a scalar, then AB is parallel to BC . Since B is common to both
AB and £BC, then A, B and C are collinear

Dividing Vectors in a Ratio

o The point P can also be worked out from first principles, or

o Using the section formula. If P divides AB in the ratio m: 7, then:

p= a+ b where p is the position vector OP
- m+tn m+n -

Example
P is the point (=2, 4, —1) and R is the point (8, —1,19). Point T divides PR in the ratio
2:3. Work out the coordinates of point T.

2:3
Pe } *R
T
Using the section formula From first principles
The ratio is 2:3,so let m=2 and n=3 PT 2
. m TR 3
E_m+n£+m+nz 3PT =2TR
=2p+ir 3(¢—p)=2(r-1)
=1(3p+2r) 3t-3p=2r—2t
ST Bt+2t=2r+3p
_ 16 £
=4[ 12 [+| 2 16| (-6
-3 38 St=| -2 |+]| 12
- 38 -3
10
:% 10 10
35 5¢t=|10
35
2
-|2 i
/ 7
Therefore T is the point (2,2,7). Therefore T is the point (2,2,7).
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The Scalar Product

e The scalar product a.6 = |¢_z||é|cos@ , where 6 is the smallest angle between 2 and &

e Remember that both vectors must point away from the angle, eg

a b

Ifa= [é} and b = % then @b = ab, +ab, +ab,
613 A

e cosO = ab or cosf = @b + b, + ab,
2] |l

e If 2 and b are perpendicular then 2.6 =0

o If 2.6 =0then a and b are perpendicular

Example
8 4
If u=|0|and »=| 0 |, calculate the angle between the vectors #+v and u—wv.
4 1
Leta=u+v Letb=u—v
8 4 8 4
a=|0[+|0 b=l0|-|0
4 1 4 1
12 4
a=|0 b=10
5 3
cos(9=t_z—'é
][]
_ (12x4)+(0x0)+(5%3)
V122 +0% +5% 4% + 0% +3°
63

16925

=14.3°
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Further Calculus

Trigonometry

Differentiation
o This is straightforward, since the formulae are given on the formula sheet:

f (%) f(x)

sin ax a.cosax

COS ax —asin ax

Integration
o Again, the formulae are provided in the paper:

f&) | [fds

. 1
sin ax —Zcosax+c

1 .
cos ax Z sinax +c¢

Examples

I 1. Differentiate x” + cos3x with respect to x.

i(x3 + cos3x) =3x> —3sin3x

dx
| 2 Find [4x +sin3x dv.
3 . 4.96'4 1
I4x +sin3x dx=7—§c053x+c

= x* —%cos3x+c

Chain Rule Differentiation

o If f(x)=(ax+5)" then f'(x)=n(ﬂx+b)n_l><¢z=¢m(ﬂx+b)n_1

or

o If £(x)=(p(x))" then £ (x)=n(p(x))"" % p'(x)

e “The power multiplies to the front, the bracket stays the same, the power lowers by one
and everything is multiplied by the differential of the bracket”
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Examples

‘ 1. Givenf(x)=%+\/;—sin3x,ﬁnd f(x).
X

Flx)=x7" +x? —sin3x

F(x)==2x" +%x_% —3cos3x
2 1
=—— 4

x  2Jx
|2. Given f(x)=(3x2+2x+1)3,ﬁnd £ (x).

—3cos3x

F(x)=3(3x" +2x+1) x(6x +2)
=3(6x+2)(3x% +2x+1)’
I 3. Differentiate y=cos’ x =(cos x)* with respect to x.

ﬂ =2(cosx)X(—sinx)
dx

=—-2cosxsinx

Integration of (ax + b)"

. j(&lX‘F&) dx=m

Example

I Find J‘(3x+5)4 dx .

5 5
Bx+5) | _Bx+5)

J'(3x+5)4 dx =
5%3 15

o It is possible for any type of ‘further calculus’ to be examined in the style of a standard
calculus question (eg optimisation, area under a curve, etc)

Exponentials and Logarithms
* An exponential is a function in the form f'(x)=a"
o Logarithms and exponentials are inverses

e y=a"Slog, y=x

e On a calculator, | log | is log,, and | In |is log,
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Laws of Logarithms

e log, x+log, y=log,xy  (Squash)

« log, x~log, y=log,%  (Spliv)

e log, x" =nlog, x (Fly)

Examples

I 1. Evaluate log, 4 +log, 6 —log, 3
log, 4 +log, 6—log, 3

o (4x6j
82 3

=log, 8
=3  (since 2’ =8)
2. Below is a diagram of part of the graph of y = ke’’*

Ja y= k60.7x

A//

0 x=1 X

(a) Find the value of 4

(b) The line with equation x =1 intersects at R. Find the coordinates of R.
(a) At (0,3), y=ke"’*

3=ke°

k=3

(b) x=1= y=3¢"""
=6.04

So R is the point (1, 6.04).
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The Wave Function

Example

I 1. Express J6sinx° — /2 cos x° in the form £cos(x —2)° where 0<4°<360.
kcos(x—a)®=Fkcosx®°cosa®+ ksinx°sina®
= kcosa®cos x°®+ ksina®sin x°
- o
kcosa®=—2 k:\/(_ﬁ)2+\/g2 cang® = ksina

kcosa®

ksina® =6 _ /246 /e

Vv gAY _ 3 NG)
vTic =22 =3

2°=180°—rtan"' (J/3)

=180°—-60°
=120°
Therefore ~/6 sin x° — /2 cos x° = 2+/2 cos (x —120)°.
I 2. Express cosx —sinx in the form ksin(x+a) where 0<a<2x.
ksin(x + a) = ksinxcosa+ kcosxsina
= kcosasinx + ksinacosx
= — 2 1
kcoso=—1 k=(=1)" +1° tana:ksmoc
ksino =1 _/3 kcosa
Vv s|a v o
a°=180°—tan"" (1)
v'T|C 0 co
=180°—45
=135°
_ 135
a—mﬂ'
:%7[

Therefore cosx —sinx =+/2 sin(x + %7{) )

e The maximum value of an expression in the form /kcos(x*a) occurs when
cos(x*a)=1;and sin(xta)=1 for ksin(x* )

e The minimum value of an expression in the form kcos(xta) occurs when
cos(xta)=-1;and sin(xta)=-1 for ksin(x* a)
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